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The method of thermal fracture of brittle bodies becomes more and more widespread in 
recent times (see [i], for instance). Here the analysis of stress fields and of domain 
fracture occupies an important place. A~d since the fracture time is ordinarily quite small, 
then obtaining simple asymptotic expressions for the stresses in small times becomes quite 
valuable. Even more so when a real analysis by formulas expressing the exact solution is 
made extremely difficult, as a rule, by the necessity to integrate over infinite domains and 
to perform summations for finite awkward expressions containing singularities. 

The model of an elastic half-space with local heating of the surface [i] is quite wide- 
spread in investigations of thermal fracture from the macroscopic aspects of strength cri- 

teria. 

The first term of asymptotic expansions of the temperature and stress is found in [2] 
for boundary conditions of heat conduction of the first kind. The examination of conditions 

of the third kind is also of interest [I]. 

I. We consider the elastic half-space z~O on whose boundary heat transfer occurs ac- 
cording to Newton's law from the medium z < 0 in the cylindrical r, ~, z coordinates. The 
temperature of the medium is @ = @of(r), where the domain of values of f(r) is the segment 
[0, i]. Find the temperature and stress within the elastic half-space whose initial tempera- 

ture is T = O. 

This problem is solved in [3] for 

/('9 ~-~ exp  ( - - r~ /46)  (6 = cons t ) .  ( l . l )  

T h e  e x a c t  s o l u t i o n  f o r  s m a l l  t i m e s  i s  t h e n  r e p r e s e n t e d  i n  t h e  f o r m  o f  c o n v e r g e n t  s e r i e s .  
R e p l a c i n g  t h e  s e r i e s  b y  f i n i t e  s u m s ,  t h e  a u t h o r  o b t a i n e d  a n  a p p r o x i m a t e  s o l u t i o n  w h o s e  e r r o r  

was not determined. In said work [3], e~act and approximate solutions were postulated for 
certain classes of functions ](r). For this case, an investigation into the accuracy of the 

approximation is in progress. 

2. It is convenient to reduce the heat-conduction boundary-value problem 

OT/Ot = aAT, Tlt~o ~ 0, 

OT/Ozh=o = h(Tlz=o - -  @), 7~=~ := T , = ~  = 0 ( 2 . 1 )  

to dimensionless quantities by setting 

~' ~ 'VL h' hVL t' ~t,6, @' = @'@o, T'  = T @  o, : : ~ :  = - -  ( 2 . 2 )  

w h e r e  r  i s  a c e r t a i n  c h a r a c t e r i s t i c  d i m e n s i o n  a s  i n  ( 1 . 1 ) ,  s a y .  T h e n ,  o m i t t i n g  t h e  p r i m e s  

f o r  b r e v i t y  i n  ( 2 . 2 ) ,  we w r i t e  ( 2 . 1 )  i n  t h e  f o r m  

OT/Ot-= AT,  Tl~=0 = 0, 

OTmz = ]~(rl~=0 - / ( r ) ) ,  Tz=~ = r ~ = =  = o 
( ~ . 3 )  

Applying the Laplace transform in t to (2.3), we obtain 

* := AT* ,  3T*/dz = h ( T * [ z =  o - -  /(r);s) (T* == L~[T] ) ,  

where L s is the operator of the Laplace transform with parameter s. 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, 
pp. 159-164, May-June, 1983. Original article submitted October 30, 1981. 

(2.4) 

0021-8944/83/2403-0437507.50 �9 1984 Plenum Publishing Corporation 437 



In turn, we apply the zero order Hankel transform in r to (2.4). We have 

where 

de~*,.'dz'Z =: (s �89 X~)T *, dT*,'dzl=.=o = h ( T * [ , = o  - -  /(k),,s),~ ' 

~;* = H~[T*];H~, is the Hankel transform operator with parameter ; , :  

/'()~) = H>. [ / ( r ) ]  i r l  (r) ]o (~r) dr. 
0 

(2.5) 

(2.6) 

find 
Solving the ordinary differential equation (2.5) and inverting the Hankel transform, we 

P 
F* = .1 ~$(~') J~ (>,r) 

0 

d%. (2 .7 )  

Substituting (I.i) for ~ ~ i, which corresponds to dimensionless coordinates, into (2.6) 
we obtain [4] 

= 2 
(2 .8 )  

Then (2.7) agrees with the expression from [3]. This circumstance should be used to 
determine the original of the temperature, and the Laplace transforms and originals in the 
general case. They are obtained from those found in [3] by the formal replacement of (2.8). 
These formulas are not presented here because of their moderate practical value since they 
require the evaluation of improper integrals of awkward expressions containing eliminable 
singularities. 

Let us note that it is sufficient for the existence of the direct and inverse Hankel 
transform that f(r) be a function of bounded variation and integrable on the half-line [0, ~) 
[5]. 

Another method of obtaining the exact solution is described in [2]. However, it also 
reduces to relationships possessing the disadvantages described above, in full measure. 
Hence, an asymptotic for t § 0 is shown in [6] for the case of giving the temperature on the 
half-space boundary. 

Convergence of the integrals in whose terms the exact solution is expressed is to be 
verified. Such a verification is performed in all the examples presented here. 

3. Henceforth, we limit ourselves to functions f(r) for which the integrals 

oo r 

o 0 

converge for i = i, 2, ..,, j = 0, i. For these functions an approximate solution is ob- 
tained successfully for small t which is more convenient for computations than is the exact 
solution. 

Let L~ I denote the inverse operator to L s. Here t is the argument of the original. 
We then have from (2.7) 

% lho - J s  1 
;1' I ~?/ (M .lo (•r) d~ ~ e - ~ ; %  ? 1 

' " " L T ,  + h J 
0 0 

from which, by setting 

we find 

_ h.e --~}~7" ] 
/'" (:' :) ' r ' ; l l  j 

(m = O, 1 . . . .  ), 
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= 1.) ,,--7i--. lo tz, i )  
0 

.~_ (_.. t )x  I ~ 2? =u ~-:,.~N+~ 
' (N @ t ) !  Io (z, t) e -~?~] d'r ( o < ~ < - 0  

,(3.1) 

by  the Taylor theorem. 

By using the obvious equality 

t 

,f lh (z, ~) d~ == lh+l (z, t) 
0 

we can prove by induction thafi 

(t~ = o ,  ~ . . . .  ) ,  

t 

' ~ (,~ .... s<)! i~+~(z , t )  ( n = O , l  . . . .  ), 
0 ~'= 0 

from which and from the boundedness of fo(z, ~) (see [7]) there follows 

I n t e g r a t i n g  ( 3 . 1 )  t e r m  by  t e r m ,  we o b t a i n  

7' = ~ ' ~  =,~ ~ <--~, ~)~~h_/< (1  t ~ - ~  (z, t) ' T (x), 
n ~ 0  h = 0  ' 

(3.2) 

where 
ec 

T(x> ~ qL,v ~-i (z, t) i " --z"~ ~; 

0 
(3.3) 

It is seen from (3.3) that T (N) = O(TN+X) (t § 0). Moreover, it can be sho~-n that q,'n+1 ==- 
o(~n) (t-+0) . Hence (3.2) yields an asymptotic expansion in the system of functions {IF n} 
as t§ 

Asymptotic expansions for the stresses are found analogously. The final answer has the 
form 

Y ' =  v~-' ~ (__ 1?~4: 
..~=o h~o (n--Zg[ Ao.n+~,o (r)t"*-~/h+~ (z, t), 

o~ ---- - -  2' -~- th {[Bo.1 (r, z)z--2  (t--I~) Bn (r, z)l/r --  Bao (r, z)z+2B.~o (r, z)} 

-~ Z (n--Z~:IT)!  t { (A2n+2,1(r) /r - -A~, ,+z ,o(r) ) fk+m+~(z  , t ) - -  
'Ii-==0 h ~ 0  ra=-0  

- -  [(B2~,.+3,, (r, z) z -i ~ B~+2, ,  (r, z)i(hz - -  t )  - -  2hB~n+~,l (r, z)) /r  - -  

- B2n ~a,o (r, z) z - -  Boj,+3,o (r, z) (hz - -  1) @ 2hB~.+2,o (r, z) @ 
+ 2~t (B~,,~ ,_,, (r, z) ~- ht',2,~.+,,~ (r, z))/r] 1~ ~.,+0 (0, t)}, 

o ,v == - -  T + th {[-- B._,, (r, z) z -~- 2 ( l  - -  ~t) B~t (r, z)l /r  -~ 2btB2o (r, z)} + 

~ ' ~  (_ff ,+~.+m t,~_h_ ~ 
n - -O  h=~ 0 m = O  

--[-12~t ([tL:~-,:2,~ (r, z)-;- /*Be,, ~,1,~ (r, z ) } / r - -  B.,~,+3,o (r, z ) - -hB~.~.2 ,o  (r, z,)) ~- 
-{- ( tL  ~2,1(r, z ) l h z -  1] -:- B....+.~,I (r, z ) z -  2hB.zn+l,1 (r, z))/r] [s~-l-~+2 (0, t)}, 

(3.4) 

439 



~, n r~-i; l ) l~ f m i-n 
(-- t"-~-"{.-%,,_~.o(,')l;,+...~(~, t ) -  c ~ ,  =- th  Bao (,', z )q -  X X u , - - , t , -  ,,,)! 

91 0 Jf q l  l i ' l = :O  " 

.... lS~.,,,.~.~ ( , ,  :) ~ -!- &,,,.,:, o (", :) (i  ! /,z)l I~ ~-,,.,.~ (0, 0},  
~,~ ~t, 7 l - - r e  ~ .LI ,  n t r t  

',i'~ ~-~ ( ' - - t )  '~, ", .~_~ , , . .  
0",. z , . �9 .li.l" ~ ~ ,,~ --- k --- m)!  t X - -  B " ~  ( " "  z ) ]  t h  i " ,,,-~o ~,~o . . . . .  o '  " 

."( {D-<!',. , +~_.l (")i  q,: ~ ,,,-t ~ (z, t) ..... !~.-~, !2 (z, t)l -~ flTe,,.._~ 1 (r, z) hz .... /]_~,,+~.~ (r, ;) h i B.,,,+:~.l (r, z) z]/~,+~+= (0, t)}, 

where 

1:,,, ( : ,  l) :-*.,~ i - ? ~  j . . . .  3, (3.5) 

and it can be shown on the basis of formulas in [4, 7] that 

. > 7 ~ . - - 1  .... ~- i -  q.,, (z, t) ..... ,'-'t~ -T 
. . . .  t'-!,~ 2.)! e k dx ~m'-= e e r f c  ]/'5.2"/Jx= z-.E--' 

t ; t 0 , , 
i ,~ (z, t) .... -:=~ . . . .  ~ (~, ~) .', q:,,, (a, t) q- -i;77. T,,, tz, t)  (~:~ = 1, '2 . . . .  ), 

z ~ 

,,. " = + 1'1/7) 
t , ' ~ t  

Going over from dimensionless stresses to dimensional stresses is realized by multiply- 
ing by D = ~E@o(I -- U)-*, where E is Young's modulus, U is the Poisson ratio, and ~ is the 
coefficient of linear temperature expansion. 

The error that the asymptotic formulas (3.4) yield can bedetermined by estimating (3.3) 
and analogous integrals for the stress (see below). 

4. Let us examine examples. In dimensional and dimensionless coordinates, take re- 

spectively 

i ( , - ) - : :  6~ , 'V( ,  ' -~- 6~) :', I O l  = ~ !V-~  >- -~-t) ~. 
( 4 . l )  

On the basis of relationships from [4] we find 

7"(k) -= e-"-. A ,..; == l"is(1), 1:7~ s :~-l, '~j(l + .':), 

. . . .  ] V'.~ ' - - ! - r  --.~)J ( 4 . 2 )  

s b  (.,> .... (. ~. i )',. ' b T  V,7-".+ ~ " 

Since fo = ~f~/~t, and f~(z, t) is the solution of the heat-conduction problem for a 
semibounded rod of initially zero temperature with heat transfer according to the Newton law 
from a medium of unit temperature at the end [8], then 

f0(z, t) ~ 0, 0 ~ / l ( z ,  t) ~ 1, ( 4 . 3 )  

U s i n g  ( 4 . 3 ) ,  we o b t a i n  a n  e s t i m a t e  o f  t h e  e r r o r  w h i c h  ( 3 . 4 )  y i e l d s  i f  N + 1 t e r m s  o f  
t h e  s e r i e s  ( t h e  N - a p p r o x i m a t i o n )  a r e  k e p t  

T<.,v) ~ (2sV-, x-- 3)t t.~.+, o',') ._<47 ~'2N-k 4), , ( 7  ) t,V + 1)! f, (z, t ) ,  !o,.,. �9 " (2 .N 1- 5 + tt) - -  , ~ tn'+~-/, (0, t), - -  - ( N  + t j !  4 -r- ~ . 

3 ~ t Ne = (~,) , t .  (:~N-!- 4)! (2N + 5 --I- D) 2 -i- ~ !  /1 (0, t), 
(~'~P ~'<" (N +'1)! 

+">' i-to-i-"--) (o, ,), 14 >1 ,.* 
!1 

.~(N)i _.-(ZN + <!  lh ' ( 2 N +  5 ~- 2t 0 *:~ (0, l ) l ~ - ~ .  Urz I +~. ~ -i , ., 

440 



For the Gauss distribution (i.i) the coefficients Ai~. and B~ are not expressed suc- 
j ~J 

cessfully in terms of tabulated functions; however, the asymptotic series (3.4) become con- 
vergent and the estimate of the approximations becomes considerably better 

F(x~[ ~ t ~.~: f: (:, t), l:(:: > <_ (AT + 2) (h + I) ,-; --~- :1~ ,: 

( ) (::: (-"~) ?) (~, :) 2 ' 3 j , , + , / ,  (o, t), lo-~:': --f >: I % ~ I ~ ( N + -  , . +  T :  , . - ~ . ( N + 2 )  2 e /  

tu+'-'/~(O, t), I=(N} ---lar_}_ ,>~ -I o, (0, t.~,+2 .1 

Moreover, the integrals in the expressions Aij and Bi~ converge quite rapidly because 
of the Gaussian exponential in the integrands. Hence, the:r computatlon, although more com- 
plex than by means of (4.2), is of no special difficulty. 

Let us note that a computation of the stresses by means of (3.9) for the "domelike" 
Terezawa function [9] is just as simple as for (4.1) since even in this case the coefficients 
Aij and Bij are expressed in terms of elementary functions. 

Calculations show that for h < 50 and t < 0.01 the zeroth approximations for (I.I) and 
(4.1) yield an error of several percent. The results for ~ and arz turn out to be compres- 
sible only for small, and not even for all, values of z as is obtained in [3]. This is ex- 
plained by the less successful selection of the system of functions arr and ~ used in our 
paper, which yields a smaller error of the approximations and permits a more exact clarifica- 
tion of the nature of the stress. 
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